
Understanding Document
Rotation

Getting the Most from Solid Framework

3rd July 2019

Solid Framework is an awesome tool for
reconstructing documents from PDFs.

It can deal with both scanned and
“Saved as” PDFs

Solid Framework tries to help you

It is common when dealing with scanned documents to find that:
- some pages were scanned upside down, and others the right way up
- some pages were portrait and others were landscape format

This can also happen with “Saved As” files that have been modified in a PDF editor

Solid Framework automatically
detects the dominant text direction,
and rotates the page so that text is
horizontal

Rotation is on a page by page basis

PDF Word

Same
text
rotated
on each
page

All pages
are the
same way
up

Sample file can be found at https://solidframework.net/wp-content/uploads/samples/textbox_orientation_multipage.pdf

This conversion is obvious when converting to Word, but the
same effect occurs when a “Core Model” is created.

The Core Model is a structured “in-memory” representation
of the PDF contents and offers many opportunities to deal
with the data within the PDF without the need to convert
to a Word Document.

Is this behaviour optional?

You can prevent the Converter from rotating a page left or right by 90
degrees (changing landscape to portrait or vice versa) using

converter.AutoRotate = false

It is not possible to prevent pages being rotated by 180 degrees if the
dominant text is upside down.

It is not possible to prevent this behaviour when using the Core
Model.

Identifying that page rotation occurred

PDF Word GetPageWasAutoRotated is 0

GetPageWasAutoRotated is 270

GetPageWasAutoRotated is 180

GetPageWasAutoRotated is 90

GetPageWasAutoRotated(pageNumber) indicates the angle (in degrees clockwise)
that the page was rotated in order to get it “the right way up”

Note: “pageNumber” starts at one for the first page – even if a subset of pages were used to create the Core Model

What happens if there are different text
orientations on the same page?

Solid Framework will detect the dominant text
direction and rotate the page so that text is the
right way up.

This can be a little confusing!

Dominant text
is right way up

Dominant text
is upside down

Dominant text
is from top to
bottom

Dominant text
is from bottom
to top

The sample file contains fours pages
• each page has same general layout,
• one text box on each page contains more text which will make it dominate

Dealing with different text orientations on the
same page

Sample file can be found at https://solidframework.net/wp-content/uploads/samples/rotated_textboxes_landscape.pdf

No change

PDF Word

GetPageWasAutoRotated = 0

Dominant text is right way up

Page rotated upside down

PDF Word

GetPageWasAutoRotated = 180

Dominant text is upside down

Page rotated left

PDF Word

GetPageWasAutoRotated = 270

Dominant text runs from top to bottom

Page rotated right

PDF Word

GetPageWasAutoRotated = 90

Dominant text runs from bottom to top

Identifying the orientation of text in the original PDF

Only applies to text within Text boxes

Need to use:

Logic for calculating the direction of text in the original document is complex.

Property Provides information about

textbox.Rotation If a text box has been rotated by 180 degrees

textbox.TextDirection If the text is horizontal or vertical

GetPageWasAutoRotated(pageNumber) If the page was rotated so that the dominant text is horizontal

private TextBoxRotation GetRotationForTextBox(SolidFramework.Model.Plumbing.TextBox tb, LayoutDocument ld, CoreModel cm)
{

int workingRotation = 0;

//the TextBox rotation is only really useful to identify whether the textbox has been rotated 180 degrees, since vertical text does not require the text box to be rotated.
if (tb.Rotation > 0)
{

//Ensure the rotation is right-angled (divisible by 90), since other values are possible. This is most likely if the document was scanned.
workingRotation = (int)(Math.Round((tb.Rotation / (double)90)) * 90) % 360;

}

//TextDirection.Horizontal may relate to text that was originally the right way up, or which was upside down.
if (tb.TextDirection != TextDirection.Horizontal)
{

switch (tb.TextDirection)
{

case TextDirection.Rotate90:
workingRotation = 90;
break;

case TextDirection.Rotate270:
workingRotation = 270;
break;

default:
break;

}
}

int pageNumber = -1;
int pageDir = -1;
int initialRotation = -1;
int finalRotation = -1;

//Get the LayoutTextBox that contains layout information for the textbox. This is done as one method of getting the pagenumber
LayoutTextBox ltb = ld.FindLayoutObject(tb.GetID()) as LayoutTextBox;
if (ltb != null)
{

pageNumber = ltb.GetPageNumber();
pageDir = cm.GetPageWasAutoRotated(pageNumber);

initialRotation = (360 + workingRotation - pageDir) % 360;
finalRotation = workingRotation;

}

return new TextBoxRotation(tb.TextDirection, tb.Rotation, initialRotation, finalRotation, pageDir, pageNumber);
}

Sample Code

Summary

Solid Framework aims to minimise the number of choices that
users have to make by setting logical defaults.

For most users this works well.

If required, the orientation of text can be calculated.

	Understanding Document Rotation�
	Solid Framework is an awesome tool for reconstructing documents from PDFs.��It can deal with both scanned and “Saved as” PDFs
	Solid Framework tries to help you
	Solid Framework automatically detects the dominant text direction, and rotates the page so that text is horizontal
	Rotation is on a page by page basis
	This conversion is obvious when converting to Word, but the same effect occurs when a “Core Model” is created.���The Core Model is a structured “in-memory” representation of the PDF contents and offers many opportunities to deal with the data within the PDF without the need to convert to a Word Document.
	Is this behaviour optional?�
	Identifying that page rotation occurred
	What happens if there are different text orientations on the same page?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Identifying the orientation of text in the original PDF
	Sample Code
	Summary

